Tell whether the ordered pair is a solution of the equation.

1. \(y = 5x; (15, -3) \)
2. \(y = 4x + 9; (-2, 1) \)
3. \(4x - 5y = 1; (4, 3) \)
4. \(7y - 3x = 11; (5, 8) \)

Find the value of \(d \) when \(r \) has the given value in the equation.

5. \(d = 2.5r; r = 64 \)
6. \(d = 3r + 120; r = 62 \)
7. \(d - 5r = 40; r = 4 \)
8. \(12r - d = -240; r = 9 \)

Graph the equation. Tell whether the equation is a function.

9. \(y = x - 3 \)
10. \(y = 2x + 4 \)
11. \(y = -\frac{3}{4}x \)
12. \(y = -\frac{1}{3}x + 2 \)
13. \(x = -11 \)
14. \(y = 8 \)
15. \(x = 8 \)
16. \(y = -1 \)
17. \(y = 2(x + 1) \)

Write the equation in function form. Then graph the equation.

18. \(7x - y = 0 \)
19. \(15x + y = 20 \)
20. \(y + 6x - 12 = 0 \)
21. \(6y - 3x = 12 \)
22. \(3x - 2y = 6 \)
23. \(4x - 12y + 24 = 0 \)

24. The formula \(y = 2.205x \) converts a mass \(x \) in kilograms to a weight \(y \) in pounds. A sports car has a mass of 1270 kilograms. What is its weight in pounds?

25. A high school booster club sets up an academic scholarship that is awarded to one student each year. The formula \(y = 2700x \) can be used to find the total amount \(y \) of money awarded through this scholarship after \(x \) years. What is the total amount of scholarship money paid after 12 years?

Find the value of \(a \) that makes the ordered pair a solution of the equation.

26. \(y = 3x + 7; (-3, a) \)
27. \(y = 11 - 7x; (a, -10) \)
28. \(2x + 4y = 14; (-5, a) \)
29. \(9x - 5y = -9; (a - 1, 9) \)